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Modified Weisskopf-Schwinger Lagrangian 

W Dittrich 
Institut fur Theoretische Physik der Universitat Tubingen, Auf der Morgenstelle 14, 
D-7400 Tubingen 1, FDR 

Received 4 November 1976, in final form 13 December 1976 

Abstract. The one-loop effective potential in quantum electrodynamics is extended by 
including radiative corrections to the electron propagator. In particular, the limiting case of 
a very strong external H(E)  field is examined and a dissident view is presented with regard 
to recent investigations concerning the modified Coulomb potential at small distances. Our 
treatment is based on non-perturbative functional techniques. 

1. Introduction 

The goal of the following considerations is to further explore quantum mechanical 
corrections for electromagnetic processes generated by constant fields. From the work 
of Heisenberg and Euler (1936) and Weisskopf (1936) it is well known that classical 
electromagnetism becomes a non-linear theory due to the probability of pair creation 
(vacuum polarization effects). As a consequence, the classical expression for the 
Lagrangian L = $(E2 - H 2 )  acquires corrections which cause interactions between 
electromagnetic fields and thus violate the superposition principle. The scattering of 
light or Delbruck scattering are familiar examples for this quantum mechanical 
non-linearity. Another highly non-linear process is the vacuum persistence amplitude 
in the presence of an external electromagnetic field. Physically it represents the effect 
that an arbitrary number of external photon lines can have on a single charged-particle 
loop, i.e., vacuum polarization to all orders in the prescribed electromagnetic field. It is 
this process which supplies the first non-linear correction to the Lagrangian of classical 
electromagnetism. 

Among the various computations of this one-loop effective Lagrangian starting with 
Heisenberg and Euler (1936) and Weisskopf (1936), Schwinger (1951) has probably 
influenced most of the work that has been performed since. It is in Schwinger’s paper 
where, among other important contributions, the proper-time method was employed to 
deal with external field problems. Dittrich (1976) and certainly several other people 
(e.g. Brown and Duff 1975) have invented their own methods to derive the relevant 
Green function of the problem. From here on one can then compute the mass operator 
(Tsai 1974a and references therein), the vacuum polarization tensor (Tsai 1974b and 
references therein), etc in the presence of a constant field. However, the original papers 
on quantum mechanical corrections to the classical Lagrangian of a constant elec- 
tromagnetic field have always excluded radiative corrections. Only recently does one 
find contributions in published and unpublished papers on the subject of the 
Weisskopf-Schwinger Lagrangian which go beyond the one-loop approximation. A 
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first step in this direction is contained in a preprint by V I Ritus (1975, P NLebedev 
Physical Institute, Moscow Preprint No. 125). Also, in Greenman and Rohrlich 
(1973)-although still limited to the one-loop effective Lagrangian-one finds some 
speculations concerning radiative corrections and their impact on the existence of a 
maximal electrostatic field strength. 

In a previous article (Dittrich 1976) we started a detailed investigation of vacuum 
polarization effects for different types of electromagnetic fields. Here we want to 
concentrate on a purely magnetic field right from the beginning. Thereafter we will go 
one step beyond present one-loop calculations and incorporate corrections with one 
internal photon line. Since we intend to produce an exact Lagrangian as far as the 
external field is concerned, we will formulate the present problem by means of 
non-perturbative functional techniques. 

2. Vacuum persistence amplitude 

Our present interest is devoted to the vacuum-to-vacuum amplitude (Fried 1972, 
Bialynicki-Birula and Bialynicki-Birula 1975) 

where A,, (x) represents the external field and J,, (x) denotes a c-number source which is 
thought to be coupled to the photon field. Setting J, = 0 on the right-hand side of (2.1) 
means that we are generating internal photon lines only. W A  + J ]  is the well known 
QED action. Since we want to treat the external field A, (x) to all orders, we proceed by 
expansion of W[A +J]: 

W[A + J] = W[A ] + (& W[A + J])J=OJ' +:(' S J P a J Y  +J1) J = O  J p J y  + . . . 
c C .  

(2.2) 
where we introduced (Dittrich 1976) 

iW"'[A] = -Tr In(1 -ey , AG+)-' (2.3) 

and furthermore 

Accordingly we obtain 

=exp(iW"'[A]) exp[iTr In(1 -D+>n)-'+$i(jA>D+(l -rID+)-'(jA)]. (2.6) 
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If we expand the Tr In term, we have 

N ,  = exp( i I (dx)Lf(”(x)) 

xexp($i(j^ )D+( j ^ )). (2.7) 
It is the first term beyond 2’(’)(x) on which we want to focus our attention. While the 
first-order non-linear correction 2(’)(x) is graphically represented by figure 1, the 
second-order correction to the Lagrange function is given by figure 2. Bold lines 
indicate the interaction of the virtual electron to all orders in the external field. Notice, 
however, that the second graph in figure 2 does not contribute, since (jt(x)) is zero for a 
constant field. Our entire second-order non-linear correction is therefore correctly 
taken into account by the single internal loop correction. 

0 
Figure 1. First-order non-linear correction to the Lagrangian. 

e +  0-0 
Figure 2. Second-order correction to the Lagrangian. 

3. Radiative corrections, .EP’*’(r) 

In this section we want to compute 

2’(’)(x) =$e2 I (dx’) tr[y,G+(x, x ’ ~ A ) ~ ~ G + ( x ’ ,  x[A)]DC”,’(x -x’). (3.1) 

To accomplish this goal we need the electron’s Green function in the presence of an 
external electromagnetic field A,(x). In what follows we concentrate on a constant 
magnetic (electric) field. For this case the Green function allows for a closed-form 
expression which was re-examined in Dittrich (1 976) using straightforward Green 
functions techniques in momentum space. The result is stated in 

G+(x, x’JA) = 4(x, x’) 

where A:= -$(x -x’)”FWv, 

X expI$(x - x ’)[eF coth(eFs)](x - x ’)} (3.3) 
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and 

The loop factor L(s)  is given by 

L ( s )  = 4 tr ln[(eFs)-’ sinh(eFs)]. 

If there is only a magnetic field present, which we assume to be in the z direction, 
F12 = -FZ1 = H, we obtain 

(3.5) e-L(s) - - eHs/sin(eHs). 

This yields the Green function in configuration space 

xexp[-im2s - ~ ( s ) + b i ( x  - x ’ ) f ( s ) ( x  -x’)] ,IieuFs (3.6) 
where we have introduced f(s) = e F  coth(eFs). Substituting the propagation function 
for the free photon: 

D+(x -x’)  = ( 4 ~ ) ~ ’  J exp[bi(x - x ’ ) ’ / t ]  dt/t2 (3.7) 
0 

(we have chosen the Feynman gauge D+,, = g,D+), and noting that +(x, x’)+(x’, x )  = 
1, 2”) can be written as 

x (dz) exp(bizCf(sl)+f(s2)+t-*)z} tr(. . .), I (3.8) 

with 

tr(. . .) = tr{y”[m -;y(f(s1)+eF)z] eiieuFslyw[m + ~ y ( f ( s ~ ) + e F ) z I  elIieuFsz}. (3.9) 
In order to continue our calculation we need the following traces in spinor space: 

y, efieuFsz) = -16 m 2  cos(eHs,) cos(eHs2) (3.10) m 2  tr(,y eliemFsl 

tr(yFy, elieuFs1 ypY.4 eiieuFsz) = -8 cos[eH(s2-s1)]gA, -8 sin[eHi(s2-sl)l(eF/eH),,. 

Introducing these results in equation (3.9) we arrive at 

tr(. . .) = -2{8m2 COS X1 COS X 2 - ( f ~ - e F ) ~ ~ [ g , , C + ( e F / e H ) , , S ] ( f l  +eF),&z‘}, 

where 

(3.11) 

(3.12) 

x1 = eHsl, 

c= cos(x~-x1), 

x2  = eHsz 

S = sin(x2 -xl). 

Equation (3.8) calls for the integral 

I (dz) exp($z(f1+f2+t-’)z} tr(. . .), (3.13) 
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whose value we can read off from 

I (dz) exp($zXz) = i(4r)’/(det X)l/’, 

and 

According to these formulae, we find 

(dz) exp{$z(f(sl) +f(s2) + t - ’ ) z }  tr(. . .) 

= -  1 ’ 4(4r):/2[4m2 cos x1 cos xz-i t r ’ { ( f T ( s 2 ) - e ~ ) [ ~ + ( e ~ / e ~ ) ~ ]  
(det X) 

x(f(S1)+enX-l)n 

where tr‘ means trace in Minkowski F, Y space. 
(det X)l/’ is given by 

1/2 
(det X)”’ = [det(f(sl) +f(s2) +t-1)]”2 = ( ,fl (f(sl) +. . .)) , 

eieen- - 
values 

which, for a purely magnetic field, yields 

(det X)l” = (cy + t-’)(@ + l - ’ )  

with 

1 1  
s1 s2 

cy = eH[cot(eHsl)+cot(eHsz)] and p =-+-. 

For the trace tr’ we obtain 

1 1 
tr’(. . .) = y g ( s l ,  s2) +- Ih (S l ,  s2) 

cy +t-  p + t -  

where 

At last we find for 5?(’) 
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The t integrals are elementary and lead to 

Il = lom d‘- 1 -- 1 - -In( 1 !), t2  a+t-l  p + t - ’  p - a  

In terms of these integrals we get 

(21 - - - i Y ( e N ) ’  0 

321r 

x[4m2 cos(eHsl) c o s ( e ~ s ~ ) ~ ~  - i12] + CT, (3.14) 

where the contact terms (a) have to be determined so as to produce a vanishing result 
for 2(2) when the external magnetic field is switched off. In this limiting case (i.e. H = 0) 
we find 

which is an infinite constant and has to be subtracted from (3.14). 

the expansion of the integrand (3.14) which is quadratic in the field, i.e., 
In order to produce a finite result for (3.14) we also have to subtract the next term in 

Finally we obtain for the second-order radiative correction to the Lagrangian 

where 

Although the integral (3.17) is still logarithmically divergent as s1 + 0, sz # 0, (s2+ 0, 
s1 # 0), we may, anticipating the case of very strong magnetic fields, cut off the proper 
time integral at some lower limit so. Without further dwelling on the renormalization 
procedure, one can demonstrate that in the course of regularization the logarithmic 
singularity can be isolated and added to the bare electron mass squared so as to define 
the renormalized mass m 2  = m: + Sm 2, where 

am2 = -[In( 3am 7) 1 +:I. 
21r iym SO 
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The additive constant follows from Schwinger’s work (e.g., Schwinger 1951, appendix 
B), and In y = C is the Eulerian constant. 

When H is large, the dominant contribution to the integral comes from the last term 
in parentheses in equation (3.17). It is mainly this term we want to limit ourselves to in 
the next section. 

4. Strong-field limit of Y?(2) 

Before we investigate the limiting case eH/m2 >> 1 for 2”” let us briefly recall the 
situation for the one-loop effective Lagrangian without radiative correction, 2’(’), Here 
we found the exact result (Dittrich 1976) 

Keeping terms proportional to (eH)’ only, we obtain 

(4.3) 

With the expression for the free Lagrangian 2’“) = -iH2 one finds the ratio (Weisskopf 
1936) 

(4.4) 

Before looking at the ratio 2’(2)/2’(0) we introduce new variables: 

s(l-u)=eHsl,  su = eHs2. 

Being interested in the dominant F2 term of equation (3.17) we find 

) -?(e,] 2’e(22)+il ia O3 sds \+o  d u g e x p (  e H  -is)[2m2(1---- 2(1-u) 2u 
3 2 ~  -.o e U 1 - U  s 

Evidently the (eH)2 dependence is given by the last term which will also provide the 
logarithm since in this case 

e H  
3 2 1 ~ ~  3 s’--Lp32r3 3 I,, s m 2‘ 

W 

ds -s /b  b=-  a 5  “ d s  a 5  2’s2)+ - -(em2 I+, 7 du = , - -(eH)2 - e , 

For strong fields only those contributions are important where 1 << s << b;  here = 1 
and we can cut off the integral between s = 1 and s = b. Under these conditions we end 
up with 
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Then to within a logarithmic accuracy we find 

(4.6) 

The other interesting case, in which only a pure constant electric field is applied, yields 
the effective Lagrangian LZ(02192)(E) = LZ(o,13z)(H + i-’ E ) .  Hence for strong electric 
fields: 

At this stage it is worth noting that the radiative correction to the Coulomb potential 
shows a similar logarithmic behaviour. However, the modified Coulomb potential is 
usually arrived at with the aid of the dressed photon propagator which involves the 
polarization function l l ( 2 ) ( k 2 ) .  For large k Z  or for small distances one finds (Gell-Mann 
and Low 1954) for the electric field 

(4.8) 

in which C = 0.57721 . . . is the familiar Eulerian constant. It is tempting, though highly 
speculative, to employ the constant-field result (4.7) to derive the correction to the 
Coulomb potential using 

and setting it equal to e/47rr2. In fact, Greenman and Rohrlich (1973) take this liberty 
and apply the Weisskopf-Schwinger Lagrangian to the Coulomb case from which they 
infer the existence of a minimum electrostatic electron radius. The result of the present 
paper (e.g., equation (4.7)), could then be used to demonstrate that there is no 
qualitative change in their arguments, provided such a maximum field strength does 
exist. However, i t  is doubtful whether polarization phenomena derived for constant 
fields can be used to study polarization phenomena in QED at small distances. As was 
shown in Dittrich (1976), the effect of vacuum polarization differs substantially between 
various types of electromagnetic fields. If we then utilize the effective Lagrangian of a 
given external field to derive a modified potential, i.e. a modified coupling constant, one 
can easily see that, for example, an external plane wave field is certainly not a suitable 
candidate for generating a modified coupling constant; in fact, the effective Lagrangian 
reduces to the free one in that special case. It is thus unlikely that the Coulomb 
potential, constant field or laser field will play identical roles in polarizing the vacuum, 

5. Conclusions 

In this paper we have re-examined and extended some results associated with the 
Weisskopf-Schwinger Lagrangian in QED. After setting up the electron’s Green 
function in an external constant magnetic field, we have computed the next higher- 
order contribution to the one-loop effective potential by including radiative corrections 
to the electron propagators. The resulting Lagrangian was then investigated for the 
case of a very strong H ( E )  field. To within logarithmic accuracy we have shown that in 
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the intense-field limit the effective Lagrangian reveals some similarity with the radiative 
correction to the Coulomb potential which is usually studied with the polarization 
function at high momenta. Beyond this formal similarity we must, however, conclude 
that the effect of polarizing the vacuum is different for various external fields and hence 
has different consequences concerning the effective coupling constant. The correct way 
to connect QED at small distances (high k 2 )  with the strong-field limit of an effective 
Lagrangian would mean first of all knowing the exact relativistic electron’s Green 
function to all orders in the external Coulomb field and then carrying out the steps that 
would lead to a Lagrangian similar to that of equation (4.7). Nobody, to the author’s 
knowledge, has ever achieved this goal. 
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